back  Back to programme...

 

Detecting malware with machine learning, from c&c to exfiltration

In this example-driven session, we will cover novel malware detection methods, as used by Cisco Cognitive Threat Analytics (CTA) engine. Participants will learn about:
Modern malware, its modus operandi and revenue streams
Evasion of traditional security defenses (firewall, antivirus)
How network anomaly detection and machine learning can uncover its presence
Methods used to reduce false positives (FP) and false negatives (FN)
Cohesive and actionable incident assembly

Prior knowledge of current security trends is recommended. No prior knowledge about machine learning is required.

 

 

 

Michal Svoboda

svoboda  

Michal is a data analytics technical leader in the Cognitive Threat Analytics team within Security and Business Group of Cisco Systems. We do internet-scale security analytics of web traffic meta-data. Our mission is to build AI detection engines that reveal active breaches inside the networks of our customers, and that without traffic content inspection and signatures.Michal's role includes analytics, engineering, as well as leadership and continuous improvement of the team's unique methodology, practices, and tools.

Contact us

TATE International s.r.o.
Hořejší nábřeží 21, 150 00 Praha 5

phone  Phone: +420 737 215 220
email  E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 
 

Na naší webové stránce používáme cookies. Některé z nich jsou nutné pro běh stránky, zatímco jiné nám pomáhají vylepšit vlastnosti stránky na základě uživatelských zkušeností (tracking cookies). Sami můžete rozhodnout, zda cookies povolíte. Mějte prosím na paměti, že při odmítnutí, nemusí být stránka zcela funkční.

Back to top